Example:  Fighter Aircraft Problem – Linear Assignment  Method

From the original decision matrix Fighter Aircraft Problem we can obtain attributewise preferences:

 

Rank

f1

f2

f3

f4

f5

f6

weights

0.2

0.1

0.1

0.1

0.2

0.3

1st

A2

A2

A3

A3

A3

A1

2nd

A4

A3

A1 A4

A5

A1 A4

A3

3rd

A1

A4

 

A1

 

A2 A4

4th

A3

A1

A2

A2

A2

 

 

Three criteria f3,f5, and f6 have tied attributewise rankings. These can be equalised:

Rank

f31f32

f51f52

f61f62

1st

A3 A3

A3 A3

A1 A1

2nd

A1 A4

A1 A4

A3 A3

3rd

A4 A1

A4 A1

A2 A4

4th

A2 A2

A2 A2

A4 A2

 

Each of these rankings gets half of weight of the tied ranking and the matrix  is:

 

1st

2nd

3rd

4th

A1

0.3

0.15

0.45

0.1

A2

0.3

0

0.15

0.55

A3

0.4

0.4

0

0.2

A4

0

0.45

0.40

0.15

 

The LP formulation is:

The optimal solution is a permutation matrix P*:

The optimal order is than: (A3,A4,A1,A2).