Use decision matrix with all maximal criteria:
|
1600
|
0,41
|
35
|
5
|
0
|
|
1000
|
0,25
|
20
|
5
|
17000
|
|
1000
|
0,2
|
15
|
5
|
20000
|
|
850
|
0,15
|
15
|
5
|
22000
|
|
1200
|
0,25
|
22
|
5
|
18400
|
|
500
|
0
|
2
|
5
|
25500
|
|
1200
|
0,36
|
33
|
5,5
|
12000
|
|
800
|
0
|
2
|
5
|
25600
|
|
500
|
0,1
|
15
|
3,5
|
23600
|
|
850
|
0,05
|
0
|
5
|
24000
|
Count the normalised matrix :
|
|
|
|
|
|
Alternative 1 |
|
|
|
|
|
Alternative 2 |
|
|
|
|
|
Alternative 3 |
|
|
|
|
|
Alternative 4 |
|
|
|
|
|
Alternative 5 |
|
|
|
|
|
Alternative 6 |
|
|
|
|
|
Alternative 7 |
|
|
|
|
|
Alternative 8 |
|
|
|
|
|
Alternative 9 |
|
|
|
|
|
Alternative 10 |
|
|
|
|
|
Ideal Variant |
|
|
|
|
|
Negative Ideal |
|
|
|
|
|
Using weights ( see Example: Washing Machines –Assessing
Weights )calculate the total trade off (utility) of each alternative. Alternative
with maximal trade off is chosen as the best.
|
|
|
Alternative 1 |
|
|
Alternative 2 |
|
|
Alternative 3 |
|
|
Alternative 4 |
|
|
Alternative 5 |
|
|
Alternative 6 |
|
|
Alternative 7 |
|
|
Alternative 8 |
|
|
Alternative 9 |
|
|
Alternative 10 |
|
|