Example: Washing Machines – SAW

Use decision matrix with all maximal criteria:
 
A1
1600
0,41
35
5
0
A2
1000
0,25
20
5
17000
A3
1000
0,2
15
5
20000
A4
850
0,15
15
5
22000
A5
1200
0,25
22
5
18400
A6
500
0
2
5
25500
A7
1200
0,36
33
5,5
12000
A8
800
0
2
5
25600
A9
500
0,1
15
3,5
23600
A10
850
0,05
0
5
24000

Count the normalised matrix :
 
Attribute 1
Attribute 2
Attribute 3
Attribute 4
Attribute 5
Alternative 1
1,0000
1,0000
1,0000
0,7500
0,0000
Alternative 2
0,4545
0,6098
0,5714
0,7500
0,6641
Alternative 3
0,4545
0,4878
0,4286
0,7500
0,7813
Alternative 4
0,3182
0,3659
0,4286
0,7500
0,8594
Alternative 5
0,6364
0,6098
0,6286
0,7500
0,7188
Alternative 6
0,0000
0,0000
0,0571
0,7500
0,9961
Alternative 7
0,6364
0,8780
0,9429
1,0000
0,4688
Alternative 8
0,2727
0,0000
0,0571
0,7500
1,0000
Alternative 9
0,0000
0,2439
0,4286
0,0000
0,9219
Alternative 10
0,3182
0,1220
0,0000
0,7500
0,9375
Ideal Variant
1600,0000
0,4100
35,0000
5,5000
25600,0000
Negative Ideal
500,0000
0,0000
0,0000
3,5000
0,0000

Using weights ( see Example: Washing Machines –Assessing Weights )calculate the total trade off (utility) of each alternative. Alternative with maximal trade off is chosen as the best.
 
Utility
Order
Alternative 1
0,63375
3
Alternative 2
0,602483
5
Alternative 3
0,607545
4
Alternative 4
0,572761
6
Alternative 5
0,673068
2
Alternative 6
0,435278
9
Alternative 7
0,697784
1
Alternative 8
0,509397
8
Alternative 9
0,384479
10
Alternative 10
0,521282
7